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Abstract—This paper introduces an innovative end-to-end
(E2E) framework for screening Specific Language Impairment
(SLI) in children, centralizing phoneme-level mispronunciation
(PLM) detection to enhance the precision and reliability. We have
developed a unique voice-omics representation that translates
PLM predictions into symbolic sequences, yielding significant
phenotyping biomarkers that provide objective and quantifiable
assessments of children’s speech patterns. Through meticulous
fine-tuning of the Connectionist Temporal Classification (CTC)
model on the L2-ARCTIC dataset and rigorous five-fold cross-
validation, our E2E models have demonstrated remarkable ac-
curacy, with Area Under the Curve (AUC) values exceeding 0.71
and a notable recall rate of up to 71.5% on the CHILDES
dataset. Our approach signifies a substantial advancement in
SLI screening, leveraging cutting-edge technology to capture the
complexities of spontaneous speech in children.

Index Terms—SLI Screening; Phoneme-level Mispronunciation
Detection; Symbolic Sequence; Phenotyping Biomarkers; Con-
nectionist Temporal Classification Model.

I. INTRODUCTION

Speech and language development are integral to a child’s

overall growth, underpinning their ability to communicate

effectively and develop linguistic competence. Despite their

importance, speech and language disorders or impairments are

common among children, affecting 3% to 16% in the U.S.,

with prevalence rates fluctuating based on age and diagnostic

criteria. Current evidence indicates that around 2% of children

experience speech and/or language disorders severe enough

to meet clinical standards, posing considerable challenges to

their communication and educational development [1]. Early

identification and intervention are paramount in addressing

these impairments effectively, with a growing emphasis on

the importance of timely screening and tailored therapeutic

approaches [1], [2].
Specific Language Impairment (SLI) is a subtype of speech

or language impairment with a specific focus on language

difficulties that are not due to other developmental conditions.

Identification of SLI in children is a multifaceted and intri-

cate process, lacking a unified reference standard applicable

This work is partly supported by the US National Science Foundation under
DRL-2229873, OISE-2106996, and CNS-2050910.

to all age groups [1], [3]. Phoneme-level mispronunciation

(PLM) detection has emerged as a valuable tool in the early

screening of SLI. For children at risk, timely identification of

mispronunciations can serve as an early indicator of poten-

tial speech or language issues, enabling prompt intervention

[4]–[6]. Within the realm of automatic speech assessment,

PLM detection is specifically designed for the systematic

identification and categorization of deviations from standard

or expected pronunciations. This technology-driven approach

not only enables a detailed analysis of speech or language

issues but also provides a granular understanding of individual

challenges. Such detailed insights are instrumental in devel-

oping personalized speech therapy programs. Moreover, the

method’s precision allows for ongoing monitoring of a child’s

development, offering valuable feedback on the effectiveness

of therapeutic interventions.

However, developing an effective screening system for SLI

in children is fraught with challenges, given the unique and

dynamic nature of pediatric speech. A primary challenge in

constructing an end-to-end (E2E) screening system for SLI

is ensuring accuracy and reliability [7]. Another significant

hurdle is providing an objective and quantifiable assessment

of a child’s speech. Methods that are based on paralinguistic

features, such as acoustic features, may fail to capture the

subtle complexities of SLI [4]. Lastly, detecting fine-grained

PLM in spontaneous speech is particularly challenging. Cur-

rent datasets predominantly consist of repetitive single or

compound words [8] or involve children reading sentences [5],

which do not adequately represent the unstructured nature of

spontaneous speech.

In this paper, we address these significant challenges by

developing a comprehensive E2E system for early and precise

screening of SLI in children, with a central focus on PLM de-

tection. The introduced PLM detection component utilizes two

methodologies - acoustic features and CTC-based automatic

speech recognition (ASR) - to generate a symbolic sequence

that captures objective and quantifiable phenotyping biomark-

ers from children’s speech, providing a detailed insight into the

speech patterns of children and specific SLI characteristics. A
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pivotal enhancement to the system’s efficiency and accessibil-

ity is the integration of OpenMP for parallel processing across

CPU cores, significantly accelerating the processing speed

and enabling the real-time analysis of spontaneous speech,

making the tool highly suitable for naturalistic speech patterns

and applicable across various settings. Moreover, rigorous

validation is achieved through five-fold cross-validation to

ensure the accuracy and generalizability of the entire E2E

pipeline. This paper, therefore, presents a forward-thinking

approach to SLI screening, merging cutting-edge technology

with practical needs in pediatric speech therapy.

Our contributions are three-folds:

• PLM-based voice-omics representation framework is pro-

posed for E2E SLI screening in children, where trans-

lating PLM prediction sequences into symbolic repre-

sentation yields innovative phenotyping biomarkers for

objective and quantifiable assessments.

• PLM detection, as a central component, is constructed

from the perspectives of acoustic features and advanced

CTC-based ASR systems.

• Performing a nuanced evaluation in a spontaneous speech

scenario, employing OpenMP for accelerated processing

and five-fold cross-validation for ensuring accuracy and

reliability.

The remainder of this paper is organized as follows: Section

II outlines the background on SLI, pediatric SLI screening

and PLM detection, Section III describes the proposed E2E

PLM-based voice-omics representation framework, Section IV

delves into the PLM detection aspect of the E2E framework,

Section V presents the benchmarking and modeling for both

the E2E framework and PLM detection, and Section VI

delivers an in-depth analysis of the results. Finally, the paper

contains a brief discussion in Section VII, followed by the

conclusion in Section VIII.

II. LITERATURE REVIEW

SLI affects effective communications, including speaking,

listening, reading, and writing [3], [9], [10]. Early screening

in children is crucial for improved outcomes [11], traditionally

reliant on subjective clinical assessments by speech-language

pathologists (SLPs) [1], [12]. Recently, there’s been a shift

towards using ASR technology and machine learning for more

objective, efficient screening. These tools analyze children’s

speech for mispronunciations and language difficulties, en-

hancing screening reliability [4]–[8].

While SLI is primarily concerned with difficulties in lan-

guage use, these aspects can influence, and be influenced by,

speech production capabilities. PLM Detection can serve as

an early indicator of underlying language processing issues,

given that accurate pronunciation requires not only motor skills

but also phonological processing, which is a component of

language ability [13]. Also, speech and language develop-

ment are highly interrelated in early childhood [14], [15].

Mispronunciations in young children can sometimes hint at

broader language development issues. Thus, PLM Detection

can indirectly contribute to identifying children who may

require a comprehensive evaluation for SLI and capture the

multifaceted nature of language impairments.

PLM Detection, vital in early SLI identification in chil-

dren [16], is categorized into two main methodologies. The

first involves decisive feature extraction, such as Goodness

of Pronunciation (GOP) and confidence measures [17]–[19],

which compare extracted acoustic features from speech against

standard models to assess pronunciation quality. The second

method uses Extended Recognition Networks (ERNs) to ex-

pand speech recognition search lattices, allowing a broader

analysis of speech variations for improved mispronunciation

detection [16], [20]. Recently, the field has evolved with the

integration of E2E frameworks in ASR, particularly CTC-

based methods [21], [22], which streamline PLM detection

by directly learning alignments between speech and phonetic

transcriptions, bypassing the need for predefined alignments or

complex linguistic models, thus enhancing detection accuracy

and efficiency.

The current landscape of speech and language assessments

for children, while extensive, presents distinct gaps and lim-

itations, particularly in the nuanced domain of PLM analysis

and its application within speech and language pathology.

A notable limitation in current methodologies in speech

and language assessments, such as those by Black et al. [23]

and Duchateau et al. [24], is the tendency to detect word-

level disfluencies for assessments. This approach overlooks

the complexities at the phoneme level, which are crucial

for a comprehensive understanding and addressing of subtle

speech impairments. Therefore, a shift towards more detailed,

phoneme-specific analysis is essential for accurately evaluating

and intervening in children’s speech or language development.

In the realm of PLM detection for children’s language

assessments, existing research often relies on datasets with

limited scope, mainly focusing on single-word pronunciations

or sentence readings. Studies like Yilmaz et al. [25], Proença

et al. [5], and Hair et al. [8] have primarily used tasks

involving word and sentence reading to detect pronunciation

errors. However, these datasets fall short of capturing the

complexities of spontaneous speech, which more accurately

reflects children’s natural speech patterns. To address this, our

approach incorporates the CHILDES Clinical English ENNI

Corpus [26], [27], which utilizes narrative elicitation from

storybooks or picture sequences, offering a more holistic and

realistic analysis of children’s speech or language capabilities.

A further limitation lies in the absence of quantifiable and

objective measurement of identification. For example, Shahin

et al. [4] used paralinguistic features in the acoustic area to

directly construct a screener, and Proença et al. [5] extracted

features with the consideration of variants and coarticulation

rules. However, those features lack insights for SLPs. Essen-

tial information, such as the identification of mispronounced

phonemes or frequency of errors, is often missing. This level

of detail is essential for SLPs to effectively tailor therapy plans

and provide focused intervention, addressing the unique needs

of each child.

We recognize the absence of a unified standard in SLI
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screening and the consequential difficulty in establishing a

direct performance comparison. By identifying several lim-

itations in current methodologies, we propose an objective,

quantifiable, and phoneme-specific analysis on natural speech

for accurately evaluating and intervening in children’s speech

or language development. However, the innovative nature of

our method challenges direct comparisons with traditional

tools, which fail to capture the naturalistic speech patterns

we prioritize. The differences in methodologies and datasets

further diminish the relevance of direct comparisons.

III. E2E FRAMEWORK OVERVIEW

We propose an innovative E2E pipeline, which is a

mispronunciation-based voice-omics representation framework

for screening SLI in children. This framework is meticulously

crafted to offer automated, precise, reliable, and early screen-

ing tailored for pediatric SLI, leveraging PLM detection to

identify distinct phenotyping biomarkers in children’s sponta-

neous speech for enhanced accuracy. As Figure 1 shows, the

framework consists of three integral components:

A. Audio Preprocessing

In the preliminary phase of our framework, raw audio

recordings that capture children engaging in storytelling activi-

ties, prompted by a series of stimuli images, are processed. The

fundamental objective in this stage is to refine these recordings

to focus exclusively on the children’s speech. To achieve this,

we employ advanced speaker diarization techniques, utilizing

the ‘pyannote.audio’ speaker diarization pipeline, specifically

version 2.1 [28], [29]. This technology is adept at discerning

and segregating different speakers within the audio. By apply-

ing this pipeline, we efficiently isolate the children’s speech

from the overall audio mix, which includes the investigator’s

speech and other extraneous sounds [26], [27]. This step also

involves the removal of all silent intervals, including both

silence within the children’s speech and those resulting from

speaker transitions, thereby eliminating any pauses that do

not contribute to the speech content analysis. Finally, speech

segments are concatenated to create an uninterrupted audio

stream for each child, which provides a clean and focused

dataset for the subsequent stages of PLM detection and SLI

screening. This preprocessing is crucial for the accuracy and

reliability of our analysis, as it ensures that our system

evaluates only the relevant speech data, thus enhancing the

overall effectiveness of the screening tool.

B. PLM Detection

The central component of our framework is PLM detec-

tion, which we have segmented into two distinct approaches:

Acoustic-Based Detection (ABD) and Transcription-Based

Detection (TBD). This section offers a preliminary overview,

with comprehensive details to be presented in Section IV.

In our Acoustic-Based Detection (ABD) methodology, we

first transform preprocessed audio into word-level text using

orthographic ASR, followed by forced alignment to obtain

phoneme-level timestamps, converting the audio into phoneme

segments. We then extract specific acoustic features for each

phoneme and develop a binary classifier to create a voice-

omics representation. Alternatively, the Transcription-Based

Detection (TBD) method utilizes a CTC-based phoneme ASR

technique for direct transcription of audio into phoneme-level

text and phoneme segmentation. The phoneme segments are

converted into the CMU ARPABET format [30], upon which

we construct a comparative model to derive the voice-omics

representation.

In both methods, each phoneme in the audio recordings

receives a binary label, either ‘C’ for correct pronunciation or

‘E’ for errors, from the binary classifier or comparative model.

This process creates a mispronunciation detection (MD)-based

phenotyping sequence, offering a detailed view of the child’s

phonemic accuracy.

C. SLI Screener

The right side of our framework delineates the process

employed for screening SLI in children. Building upon the

symbolic sequence from PLM detection, a variety of phenotyp-

ing biomarkers are extracted from several analytical perspec-

tives, including density, run-length encoding, and sequence

complexity. Such a multifaceted approach allows us to capture

a comprehensive profile of each child’s speech pattern, crucial

for an accurate SLI assessment. Finally, these phenotyping

biomarkers are employed to construct and fine-tune Support

Vector Machine (SVM) and Random Forest (RF) models. This

is referred to as Sequence-Based Screening (SBS). These clas-

sifiers are designed to evaluate the likelihood of SLI in children

based on the analyzed speech patterns, which ensures that

the assessment is grounded in objective, quantifiable speech

characteristics. These two classical machine learning models

were selected because they have been the de facto standard

for the classification task, and it would be less challenging

for general users to understand. Also, classical models often

serve as good benchmarks. Consequently, this portion of the

framework is integral to achieving a reliable and effective tool

for early SLI detection in pediatric populations.

IV. PLM DETECTION

This section will elaborate on the specific implementation

details of PLM detection, the core of our E2E framework.

A. Acoustic-Based Detection (ABD)

Figure 2 shows the detailed view of ABD.

1) Phoneme-based Segmentation:
Orthographic ASR: The preprocessed audio signal under-

goes intricate processing steps using Whisper-Medium, an

advanced ASR system developed by OpenAI [31]. This system

is adept at handling extensive audio data, segmenting the entire

audio stream into discrete 30-second chunks for analysis. Each

segment is then meticulously transcribed into orthographic

text, ensuring its accuracy and linguistic correctness.

Forced Alignment: Next, Montreal Forced Aligner (MFA),

a linguistic tool designed for aligning speech audio with its

corresponding text transcription [32], is applied to get precise
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Fig. 1. A mispronunciation-based voice-omics representation framework for screening SLI in children

Fig. 2. A detailed view of the acoustic-based detection (ABD) framework

phoneme-level alignment. The MFA processes these inputs by

extracting features from the audio and utilizing a phonetic

dictionary to map words to their phonetic representations.

This process yields timestamps for each phoneme, effectively

segmenting the audio data into distinct phoneme units.

2) Voice-Omics Representation:
Acoustic Feature Extraction: Then, Librosa [33] and Kaldi

[34] are used to extract acoustic features for each phoneme

using the phone-level timestamps produced by the forced

alignment. Kaldi is used to compute GOP, and Librosa is

used to compute the remaining acoustic features described in

Section V-B2.

Binary Classifier: Finally, the acoustic features for each

phoneme are processed through sophisticated machine learn-

ing models, including SVM and RF. These models are em-

ployed to perform binary PLM classification to determine

whether each phoneme is pronounced correctly. These two

models were selected for the same reasons stated in Section

III-C

B. Transcription-Based Detection (TBD)

Figure 3 shows the detailed view of TBD.

1) Phoneme-based Segmentation:
Phoneme ASR: The preprocessed audio signal undergoes

the phonetic transcription process using XLSR-Wav2Vec2, a

CTC-based ASR created by Facebook [35]. The model was

fine-tuned for the phone-level transcription task in this study,

achieving phone error rates (PER) comparable to state-of-the-

art [36]. The output International Phonetic Alphabet (IPA)

phones are grouped by space-separated words, which is critical

for the subsequent steps in the pipeline.
2) Voice-Omics Representation:
IPA-to-ARPA Converter: Next, Gruut IPA, a tool for ma-

nipulating IPA pronunciations [37], is used to convert the IPA

transcriptions created in the previous step to CMU ARPABET.

Because each IPA symbol maps to one symbol in CMU

ARPANET (disregarding stress) [30], this process resembles a

traditional mapping operation. This step is necessary to ensure

the phonetic transcription uses the same phonetic alphabet as

the comparison model.
Comparison Model: Finally, each word in the phonetic

transcription is isolated and used to query the CMU Pro-

nouncing Dictionary, which contains pronunciations for over

134,000 English words in CMU ARPABET [30]. The query is

performed by doing a linear scan, parallelized with OpenMP,

over the entire dictionary to locate the word with the closest

pronunciation by Levenshtein distance. An alignment is then

computed between the actual pronunciation and the target’s

closest pronunciation using the Needleman-Wunsch algorithm

[38], labeling each phone as correct if it matches the target in

the alignment and erroneous otherwise.
More formally, Levenshtein distance describes the minimum

number of operations required to convert a source string to a

target string, where valid operations are insertion, removal, and

substitution. Levenshtein distance LD(s, t) can be described

by the following recursive definition, where s is the source

string of length n, t is the target string of length m, and xi

indicates the character at position i in string x:

297

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on April 01,2025 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. A detailed view of the transcription-based detection (TBD) framework

LD(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|t| if |s| = 0

|s| if |t| = 0

LD(s2:n, t2:m) if s1 = t1

1 + min

⎧⎪⎨
⎪⎩
LD(s2:n, t)

LD(s, t2:m)

LD(s2:n, t2:m)

otherwise

(1)

Then, given a word s from the source ARPABET tran-

scription, we compute the target pronunciation t as follows,

where D is the set of all pronunciation strings in the CMU

Pronouncing Dictionary:

t = argmin
t∗∈D

LD(s, t∗). (2)

Finally, we perform the Needleman-Wunsch algorithm to

compute an alignment between s and t. The resulting aligned

strings s′ and t′ have equal length l, and each character is

either in the set of ARPABET phones or is the blank character.

Then, we label each phone pi as follows, where 1 ≤ i ≤ l:

pi =

{
C s′i = t′i
E otherwise

. (3)

V. BENCHMARKING AND MODELING

This section describes the configuration for all of our

benchmarking and modeling. The first part focuses on our

E2E SLI screening framework, and the second part is for our

core PLM detection component. We introduce datasets, feature

spaces, model configurations, and evaluation metrics for each

part.

A. E2E framework

1) Datasets: CHILDES Clinical English ENNI Corpus

[26], [27] has been used for benchmarking our E2E SLI

screening framework. It encompasses a diverse range of nar-

rative data from English-speaking children. This includes both

typically developing (TD) children and those with SLI, which

is compiled from a cohort of children aged 4 to 9, comprising

77 participants with SLI and 300 TD participants. This rich

corpus consists of narrative samples elicited from children

through a series of picture stimuli, specifically designed to

encourage storytelling, which provides a natural context for

studying children’s narrative skills and makes this corpus cru-

cial for understanding various aspects of language acquisition

and identifying language disorders in children.

For our specific research purposes, we focused on the subset

of the dataset that included audio recordings. This decision was

necessitated by the fact that some children in the corpus were

represented only through transcripts without corresponding

audio. Consequently, our analysis incorporated data from 67

children diagnosed with SLI and 288 TD children, forming the

basis for our E2E pipeline and the model training and testing

for the SLI Screener component. Each selected speaker in

this subset contributed one audio recording. These recordings,

spanning several minutes, encompass not only the speech of

the child but also the interactions with the investigator.

2) Feature Space - Phenotyping Biomarkers: Phenotyping

biomarkers are extracted from the symbolic sequence gener-

ated by PLM detection stage, which is a string containing

the characters ‘C’ and ‘E’, where ‘C’ indicates a correctly

pronounced phoneme and ‘E’ indicates the mispronounced

phoneme. These phenotyping biomarkers are designed to

provide objective and quantifiable speech characteristics for

effectively screening SLI in children.

The detailed information and equations for each phenotyp-

ing biomarker are shown below, where S represents a length

n string of ‘C’ and ‘E’ characters, and Si is the character

at position i such that 1 ≤ i ≤ n. Note that functions

c : S → {S} and e : S → {S} are defined as taking a

string S and returning a list of all contiguous ‘C’ and ‘E’ sub-

sequences respectively. Additionally, should the expression for

any metric be undefined (e.g. ACE when there are no errors),

it is treated as 0. Finally, we adopt the Iverson bracket notation

[39] which is defined as follows:

[P ] =

{
1 if P is true

0 otherwise
(4)

• Mispronunciation Density (MPD): MPD describes the

relative frequency of mispronunciations in a section of

speech. It is designed from the density perspective, where

a high MPD value indicates high anomalies or variations

during speech. We expect children with SLI to have a

positive correlation value on this biomarker.

MPD =
1

n

n∑
i=1

[Si = E] (5)

• Normalized Transition Count (NTC): NTC describes

how frequently the speaker transitions between mispro-

nounced and correctly pronounced phones. NTC is de-

signed from the sequence complexity perspective, where

this biomarker indicates the information flow or sequence
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dynamics. A high NTC value means more frequent

changes or shifts, and we expect children with SLI to

have a positive correlation value on this biomarker.

NTC =
1

n

n∑
i=2

[Si �= Si−1] (6)

• Average Common Correct (ACC): ACC describes the

average number of successive phones the speaker pro-

nounces correctly. It’s designed from the sequence com-

plexity perspective. We expect to see a negative cor-

relation between this biomarker and children with SLI

because we believe children with SLI will have less

correctly pronounced phones (greater MPD) and more

transitions (greater NTC) in a section of the speech.

ACC =
1

|c(S)|
n∑

i=1

[Si = C] (7)

• Average Common Error (ACE): ACE describes the aver-

age number of successive phones the speaker pronounces

incorrectly. Similar to ACC, ACE is also designed from

a sequence complexity perspective. It’s challenging to

hypothesize about the correlation between ACE and chil-

dren with SLI because they are expected to have more

incorrectly pronounced phones and transitions in a section

of speech.

ACE =
1

|e(S)|
n∑

i=1

[Si = E] (8)

• Longest Common Correct (LCC): LCC describes the

maximum number of successive phones the speaker

pronounces correctly. LCC is designed from the run

length encoding perspective, where a higher LCC value

potentially indicates fewer errors in a section of speech.

We expect to see a negative correlation between LCC and

SLI.

LCC = max
S∗∈c(S)

|S∗| (9)

• Longest Common Error (LCE): LCE describes the max-

imum number of successive phones the speaker pro-

nounces incorrectly. Similar to LCC, LCE may indicate

continuous error presence and a high LCE can reveal

strong connections or associations of the errors. We

expect to see a positive correlation between LCE and

SLI.

LCE = max
S∗∈e(S)

|S∗| (10)

3) Model Configurations for SLI Screener: When selecting

model configurations for the SLI screener, we applied five-

fold cross-validation and selected the hyperparameters that

maximized AUC. This helps us ensure the accuracy and

generalizability of the models across different subsets of data.

For the ABD SBS SVM, the best configuration was a linear

kernel with a C of 0.01. For the TBD SBS SVM, the best

configuration was a linear kernel with a C of 100. For the

ABD SBS RF, we used 40 estimators with a maximum depth

of 5. Finally, for the TBD SBS RF, we used 5 estimators with

a maximum depth of 5.

4) Evaluation Metrics for SLI Screener: SLI screeners were

evaluated using AUC, accuracy, precision, recall, and F1. A

sample with SLI was considered positive, and a sample with

TD was considered negative. For this task, we considered the

most important metrics to be AUC and recall because AUC

provides a global view of the model’s performance across all

thresholds, and recall gives insight into how effectively the

model avoids false negatives. High values for these metrics

reduce the probability of missing SLI-positive children with

the screener, which is one of our main aims.

B. PLM Detection

1) Datasets: The L2-ARCTIC speech corpus, designed for

voice and accent conversion research as well as mispronun-

ciation detection, is instrumental in our PLM detection stage

[40]. Comprising high-quality audio from 24 non-native En-

glish speakers across six languages (Hindi, Korean, Mandarin,

Spanish, Arabic, and Vietnamese) and providing orthographic

and forced-aligned phonetic transcriptions, the corpus also

includes 150 manually annotated utterances per speaker. These

annotations, identifying common mispronunciation errors like

substitutions, deletions, and insertions, enhance the dataset’s

utility for pronunciation training and speech recognition accu-

racy. We leverage this detailed subset for fine-tuning, training,

and testing in PLM detection, treating phonemes marked as

errors as mispronunciations.

It is important to mention that the dataset presented an

imbalance with a majority of phonemes labeled as correctly

pronounced. To counteract this and ensure effective model

training and evaluation, we employed random downsampling

to attain a balanced dataset, with an equal count of 8017 cor-

rectly and mispronounced phonemes. For the training phase,

we allocated 6413 correctly pronounced and 6414 mispro-

nounced phonemes, reserving the rest for testing. Furthermore,

the extensive quantity of phonemes presented a computational

challenge for conventional classifiers like SVM, potentially

impeding their ability to converge swiftly. Through selection

and equalization of phoneme quantities, we optimized the

classifiers’ performance, thereby enhancing the precision and

dependability of our PLM detection results.

2) Feature Space - Acoustic Features: Several acoustic

features are extracted for each phoneme by acquiring the

phone-level timestamps (either from labels or MFA), slicing

the audio at each phoneme, and computing the corresponding

features on the audio signal. These acoustic features are used

for the ABD method in this PLM detection component. The

detailed information for each acoustic feature is shown below.

• First three formants (F1, F2, and F3): Formants are

resonant frequencies of the vocal tract, and they play a

significant role in characterizing how vowels sound.

• The first 13 Mel-Frequency Cepstral Coefficients

(MFCCs): MFCCs are the representations of the short-

term power spectrum of a sound, which are essential
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in speech recognition, speaker identification, and audio

classification.

• Spectral contrast (7 bands): This feature analyzes the

amplitude differences between peaks and valleys in an

audio spectrum across seven distinct frequency bands.

• Spectral bandwidth: It quantifies the range of frequencies

encompassing the majority of a sound signal’s energy,

highlighting the frequency spread within a sound.

• GOP score: GOP score offers a numerical assessment of

pronunciation quality, comparing how closely a sound or

phoneme matches standard or native pronunciation. It’s

computed by taking the log of the posterior probability

of phone p given evidence O(p) and then normalizing the

result.

GOP(p) ≡
∣∣∣log(P (p|O(p)))

∣∣∣ /NF(p)

≈
∣∣∣∣log

(
P (O(p)|p)

maxq∈Q P (O(p)|q)
)∣∣∣∣ /NF(p)

(11)

3) Model Configurations for PLM Detection:
ASR Models: An XLSR-Wav2Vec2 model was used for

phonetic transcription in TBD. This CTC model was selected

for its effectiveness in phoneme-level mispronunciation de-

tection. It is preferred because it directly learns alignments

between speech and phonetic transcriptions, bypassing the

need for predefined alignments or complex linguistic models.

This improves detection accuracy and efficiency. Also, this

model was fine-tuned on the L2-ARCTIC dataset to improve

recognition accuracy for phoneme-level variations and mispro-

nunciations in children’s speech. The decision to fine-tune a

model on L2-ARCTIC was motivated by the fact that the TBD

pipeline requires transcriptions of exactly what a speaker said,

rather than their intent. Existing XLSR-Wav2Vec2 models are

trained on phonetic labels that do not include mispronunciation

information [41]. Because we needed to capture mispronunci-

ations in the transcription for TBD to work, a model tuned on

L2-ARCTIC was more theoretically sound. To fine-tune the

model, the manually annotated utterances from L2-ARCTIC

were divided into a 90/10 train/test split, with 3224 training

utterances and 359 testing utterances. The training utterances

were then used to fine-tune the base XLSR-Wav2Vec2 model,

and the testing utterances were used to evaluate the model.

Binary Classifier Models: Similar to the SLI screener clas-

sifiers, the SVM and RF model configurations for PLM detec-

tion were selected by applying a five-fold cross-validated grid

search across their common hyperparameters and choosing

the configuration that maximized AUC on their respective

datasets to ensure accuracy and generalizability. For the SVM,

this was the radial basis function kernel with C of 10 and

an automatically scaled gamma. For the RF, this was 200

estimators with an infinite depth. Finally, all features were

standardized to unit mean and variance before training and

evaluation.

4) Evaluation Metrics for PLM Detection: For PLM de-

tection, ABD and TBD were evaluated in a slightly different

manner, which was necessitated by differences in the ways

each approach generated predictions.

For ABD, the evaluation was straightforward, using the

same metrics as the SLI screeners. This included AUC, accu-

racy, precision, recall, and F1, defined in Section V-A4. The

positive class label indicated a correctly pronounced phone,

and the negative class label indicated a mispronounced phone.

For TBD, the evaluation was broken into two components.

The first component was the transcription performance of the

ASR models. This was measured in terms of the word error

rate (WER) and phone error rate (PER) between predicted

sequences and actual sequences.

The second component was the detection performance of

the comparison model. This was measured using the same

metrics as ABD with the exception of AUC, which could

not be obtained for TBD since it did not use a variable

decision boundary. Additionally, unlike ABD, the predicted

CE sequence for TBD p could have a different length than the

labeled CE sequence y. Thus, to evaluate TBD, we aligned

sequences p and y using the Needleman-Wunsch algorithm

to produce sequences p′ and y′ with equal length l. We then

used all 1786 pairs from the testing dataset where y′i = E
and randomly sampled 1786 pairs where y′i = C, applying

the following rule to each pair of p′i and y′i where 1 ≤ i ≤ l:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
TP y′i = C = p′i
TN y′i = E = p′i
FP y′i = E �= p′i
FN y′i = C �= p′i

(12)

As a final note, some papers break down true rejections (in

this case, TN) for PLM detection into subcategories ‘correct

diagnosis’ and ‘diagnosis error’ [16]. That is not done in this

paper because phones are only labeled ‘C’ or ‘E’, meaning

errors are not diagnosed in this work.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present results for both the E2E SLI

screening framework and PLM detection. For the E2E frame-

work, we focus on highlighting its performance using phe-

notyping biomarkers compared with a baseline, followed by

a statistical analysis of these biomarkers. In PLM detection,

we evaluate the binary classification performance of ABD and

assess the transcription accuracy of the fine-tuned ASR model

and the performance of the comparison model in TBD.

A. E2E Framework

1) SLI Screener Performance: To establish a baseline for

SLI screening, we first implemented acoustic-based screening

(ABS). Differing from sequence-based screening (SBS), ABS

predicts for each pronounced phone whether or not it was

produced by a speaker with SLI and computes the final label

of a speaker based on a majority vote over a set of phones.

Afterwards, we developed E2E SLI screening models using

SVM and RF techniques, utilizing the phenotyping biomarkers

detailed in Section V-A2. These models were built on the
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symbolic sequences generated respectively by the RF classifier

of ABD and TBD. This choice was informed by our PLM

performance analysis, which will be elaborated in Section

VI-B. This structured approach ensures a comprehensive and

methodical evaluation of SLI screening methodologies.

The performance for all the screeners is shown in Table

I. Two baselines (ABS SVM and ABS RF) have distinctive

performances. Specifically, the ABS RF screener has better

AUC, accuracy, and precision, while the ABS SVM has

better recall and F1 score. For E2E SLI screeners, our model

demonstrates robust and consistent performance in terms of the

AUC, with the ABD SBS SVM model achieving the highest

AUC at 0.725. Furthermore, the SVM models applied to both

ABD SBS and TBD SBS have exhibited superior recall rates.

Notably, the TBD SBS SVM model has attained the highest

recall, reaching 0.715.

TABLE I
SLI SCREENER PERFORMANCE SUMMARY

AUC Accuracy Precision Recall F1

ABS SVM 0.669 0.670 0.305 0.567 0.396

ABS RF 0.701 0.792 0.426 0.266 0.304

ABD SBS SVM 0.725 0.662 0.319 0.674 0.430
ABD SBS RF 0.716 0.707 0.326 0.466 0.375

TBD SBS SVM 0.710 0.608 0.286 0.715 0.408

TBD SBS RF 0.710 0.746 0.345 0.357 0.348

We also show the five-fold cross-validated ROC curves for

E2E ABD SBS and E2E TBD SBS in Figure 4 and Figure 5

respectively. The AUC values for the SVM models seem more

variable across the folds, which might indicate a sensitivity to

the data distribution in each fold. The RF models appear to

be more robust with less variation in AUC, especially in TBD

SBS settings. The variance in AUC scores across different

folds suggests that model performance may be influenced by

the particular characteristics of the data in each fold, which

could include the distribution of SLI and non-SLI cases or the

complexity of the speech samples.

One thing to note is that while the ABS RF model shows

better performance on some metrics, these metrics are less

important for the SLI screening task. For SLI screening, it is

most important to catch all SLI-positive children (i.e., avoid

false negatives). Since the ABS RF model has the worst

recall, it is clearly a poor choice for this task. In addition,

our proposed SBS method improves model interpretability

and explainability, since sequence features like LCE are more

understandable and quantifiable than acoustic features like 13

MFCCs. Therefore, our SBS method surpasses the baseline in

key metrics and enhances understandability, making it a highly

valuable approach.

Furthermore, for SBS models, the ABD SBS SVM stands

out with the highest AUC and F1 score, suggesting it’s the

most effective for SLI screening, balancing SLI detection

(recall), and minimizing false positives (precision). Despite

lower precision and accuracy, the TBD SBS SVM exhibits the

highest recall, making it superior in identifying positive cases

Fig. 4. Five-fold cross-validated ROC curves in E2E ABD SBS setting

of SLI, a critical factor in contexts where missing a diagnosis

is costly.

2) Phenotyping Biomarkers Analysis: Next, we performed

statistical analysis on the phenotyping biomarkers described

in Section V-A2, where sequences were generated using RF

ABD and TBD. We performed this analysis by calculating

the Point-Biserial Correlation Coefficient (r value) for each

biomarker with respect to SLI status and chose p = .050

as a cutoff for statistical significance. Point-Biserial Testing

is a special case of the Pearson correlation coefficient and

measures the strength and direction of the association between

a continuous variable and a binary categorical variable. The

correlation coefficient can range from -1 to 1, where values

close to -1 or 1 indicate a strong relationship, and values near

0 indicate a weak relationship. The r and p values for each

feature are shown in Table II and Table III.

TABLE II
ABD PHENOTYPING BIOMARKER CORRELATION

MPD NTC LCC ACC LCE ACE

r value 0.312 -0.085 -0.199 -0.297 0.149 0.300

p value 1.87E-9 0.109 1.64E-4 1.10E-8 4.84E-3 1.90E-9

TABLE III
TBD PHENOTYPING BIOMARKER CORRELATION

MPD NTC LCC ACC LCE ACE

r value 0.298 0.306 -0.267 0.104 0.104 0.023

p value 1.00E-8 3.81E-9 3.17E-7 9.91E-8 0.050 0.662

The results show that most phenotyping biomarkers (MPD,

LCC, ACC, LCE) are statistically significant for both ABD and
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Fig. 5. Five-fold cross-validated ROC curves in E2E TBD SBS setting

TBD. In addition, our expectations for correlation direction

have been verified for MPD, ACC, and LCE, indicating that

the phenotyping biomarkers we constructed from sequence

density and run-length encoding are effective and reliable.

The three biomarkers built from the perspective of sequence

complexity show some fluctuations, such as high p value or

inconsistency in the direction of coefficients on ABD and

TBD, due to the complexity of the speech.

B. PLM Detection

We conducted independent evaluations of our ABD and

TBD methods, thereby gaining a thorough insight into the per-

formance of this pivotal component within the E2E framework.

1) ABD: The results for the ABD approach, which used the

features from Section V-B2, are shown in Table IV, where the

RF model outperformed the SVM model on all key metrics.

TABLE IV
ABD PERFORMANCE

AUC Accuracy Precision Recall F1

SVM 0.663 0.619 0.617 0.628 0.623

RF 0.697 0.644 0.632 0.689 0.659

2) TBD: For TBD, we first conducted error analysis where

we identified the rate of inaccuracies introduced by the ASR

system. It involved comparing ASR-generated transcriptions

with manually verified transcriptions to quantify the misin-

terpretation rate. We fine-tuned XLSR-Wav2Vec2 on the L2-

ARCTIC manually annotated subset to alleviate the possibility

of the ASR model misinterpreting incorrect pronunciations

as errors in transcription. The evaluation achieved a WER

of 42.5% and a PER of 12.8%, comparable to state-of-the-

art on the TIMIT dataset [36]. The WER suffered due to the

absence of a language model, which typically improves WER

through contextual prediction. We omitted this integration to

avoid masking mispronunciation data, prioritizing clarity in

phonetic analysis.

In TBD performance evaluation, the model achieved a

detection accuracy of 0.604 and precision of 0.846 but showed

lower recall and F1 scores of 0.255 and 0.392, respectively.

The suboptimal results may be linked to the large pronun-

ciation lexicon. The CMU Pronunciation lexicon, containing

many rarely used words, especially in children’s speech, can

cause mismatches with mispronounced words, leading to a

skewed ‘C’ label prediction and increased false positives. A

potential solution is to condense the lexicon to words more

frequently used by children.

To speed up TBD, we parallelized the lexicon search over

multiple CPU cores using OpenMP and benchmarked the

process on an Intel Core i5-12600K Processor. The mean

runtime for each lexicon search was calculated for child #413

(SLI) in the CHILDES dataset, as benchmarking the entire

dataset was time-intensive. Results are detailed in Table V.

TABLE V
LEXICON SEARCH PERFORMANCE

Mean Runtime (s) Mean Speedup

Python 1.215 1.0

C 0.051 22.1

C + OpenMP 0.035 34.7

VII. DISCUSSION AND FUTURE PLAN

A. Discussion and Insights

In this study, we developed an E2E screening system for SLI

in children, with a focus on PLM detection. This automated

tool excels in extracting objective, quantifiable phenotyping

biomarkers from children’s speech, particularly emphasizing

the analysis of detailed speech patterns in spontaneous speech.

This method provides a nuanced and comprehensive approach

to SLI screening in pediatric populations.

1) PLM-based Voice-Omic Representation Framework:
Innovative Phenotyping Biomarkers: Our study intro-

duces novel phenotyping biomarkers for children’s speech,

derived from the symbolic sequences in PLM detection. Most

of the biomarkers have shown statistical significance with p-

values below 0.05, affirming their reliability and validating

the effectiveness of our E2E framework in pinpointing SLI

characteristics.

Core PLM Detection Component: The core of our sys-

tem, PLM detection, was built from distinct ABD and TBD

methodologies. This dual approach, incorporating both acous-

tic feature analysis and transcription, enables thorough speech

pattern assessment. Utilizing a cutting-edge CTC-based model,

our framework proficiently processes and analyzes speech at

a phoneme-specific level, facilitating precise SLI screening in

children.
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2) Accurate, Reliable and Generalized E2E SLI Screening
Pipeline:

Performance of E2E Models: Our four E2E models for

SLI screening demonstrated robust performance, with each

achieving an AUC value over 0.71, indicating strong accuracy

and predictive power. Notably, the TBD SBS SVM model

exhibited a high recall rate of 71.5%, crucial for effectively

identifying SLI cases.

Fine-Tuning of the CTC Model: Fine-tuning the CTC

model on the L2-ARCTIC dataset was vital to meet the E2E

pipeline’s needs, which necessitates accurate transcriptions of

what was spoken, as opposed to speaker intent. This step

inherently introduces a level of linguistic diversity into the

model as the L2-ARCTIC dataset comprises speakers across

six different native languages, making it more robust against

variations in pronunciation that could be attributed to cultural

or linguistic backgrounds. It also significantly enhanced the

model’s capability to accurately reflect the speech of children

with SLI, especially in spontaneous speech.

Reliability through Cross-Validation: We employed five-

fold cross-validation across all experiments to guarantee the

robustness and wider applicability of our findings, which can

be seen as a step toward generalization. Each fold likely

contains a variety of speech patterns, which helps ensure

reliable performance metrics and that the model does not

overfit to a particular subset of data and can generalize across

different speech types or to diverse populations.

Evaluated in Spontaneous Speech: The CHILDES dataset,

which was used for benchmarking, includes narrative samples

elicited from children through picture stimuli, encouraging

natural speech. This real-world application of the model to

spontaneous narrative speech can enhance its ability to gen-

eralize across different cultural and linguistic backgrounds, as

storytelling often reveals deep-seated linguistic structures.

B. Future Plan

In our future work on E2E SLI screening for children, we

plan to implement two key strategies:

Enhanced Phenotyping Biomarkers Based on Sequence
Analysis: Our current work has laid a foundation by extracting

phenotyping biomarkers from the overall view of the symbolic

sequence. Moving forward, we aim to delve deeper and

explore these biomarkers from the segmented perspective of

correct and error phonemes, which may uncover nuanced and

neglected speech patterns indicative of SLI in children. We will

also investigate the distribution of correct and error phonemes,

their trends, and cyclical patterns within speech data. This

approach is anticipated to reveal intricate speech patterns that

are characteristic of SLI, thereby enriching our phenotyping

palette and potentially enhancing the diagnostic precision of

our framework.

Innovative Sequence Generation Strategies: In our exist-

ing framework, the sequences are generated based on the CE

symbolic sequence without accounting for temporal dynamics.

We intend to evolve our sequence generation strategy by in-

corporating a time-series dimension. This forthcoming models

will incorporate actual time information, thereby transitioning

from a solely symbolic to a time-sequenced analysis of speech.

By embedding time-series data, we anticipate capturing the

temporal dynamics of speech or language formation and usage

in SLI children.

Reliability Assessments and Enhancements of ASR: The

inherent challenge arises when the ASR model potentially

misinterprets incorrect pronunciations as errors in transcrip-

tion, leading to inaccurately labeled data. We intend to assess

how these transcription inaccuracies affect our framework’s

ability to accurately identify SLI firstly. This may involve re-

evaluating our dataset with manually verified labels to mea-

sure any significant changes in the framework’s performance

metrics. Also, to mitigate the impact of ASR inaccuracies,

we would like to explore the feasibility of customizing and

retraining the ASR model on a dataset more representative of

our target demographic (children’s speech, including common

mispronunciations and speech impairments), to reduce the

model’s misinterpretation of incorrect pronunciations.

Generalization Enhancement to Cultural and Linguistic
Diversity: We plan to include more varied datasets that capture

a broader spectrum of cultural and linguistic backgrounds.

This expansion aims to enhance the model’s ability to learn

and generalize speech patterns across diverse populations. And

future iterations of the model could focus on incorporating

culturally sensitive approaches (like adaptive layers) that ac-

count for variations in language use and expressions. The

phenotyping biomarkers that were derived from the symbolic

sequences in PLM detection could be further analyzed to

determine if certain patterns are universally indicative of SLI

across cultures and languages, or if new biomarkers need to

be developed to account for cultural and linguistic diversity.

VIII. CONCLUSION

In conclusion, our E2E mispronunciation-based voice-omics

representation framework represents a significant leap forward

in the early screening of SLI in children. By harnessing the

power of PLM detection and innovative symbolic represen-

tation and phenotyping biomarkers, we have unveiled new

dimensions in the objective and quantifiable assessment of

children’s speech and achieved the AUC of 0.71 and recall

of 71.5% in the E2E TBD SBS SVM model. Our dual-

method approach for core PLM detection, encompassing both

acoustic and transcriptional analyses, has enabled a fine-

grained, phoneme-specific evaluation that aligns with natural-

istic speech patterns, especially in the spontaneous speech sce-

nario. The statistical significance of our phenotyping features

(such as MPD, LCC, ACC, and LCE) demonstrated through

extensive analysis confirms the robustness and reliability of

our E2E framework. Furthermore, the fine-tuning of our CTC

model on the L2-ARCTIC dataset and the validation through

five-fold cross-validation on both PLM detection and E2E SLI

screening underscore the accuracy and generalizability of our

screening pipeline. As we reflect on our contributions, we

stand on the cusp of a new era in pediatric speech therapy,

one that is informed by precise, reliable, and technologically
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enriched tools designed to better the lives of children with

SLI. Our work not only offers a forward-thinking solution for

SLI screening but also sets the stage for future innovations

that can build upon our foundational research.
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